1) Find the missing length, \(x \), in triangle ABC below

2) Find the missing length, \(x \), in triangle DEF below
3) Find the missing length, x, in triangle ABC below.

\[\triangle ABC \]

- A to B: 9 cm
- B to C: x cm
- A to C: 27 cm

\[\triangle DEF \]

- D to E: 15 cm
- E to F: 21 cm

4) Find the missing length, x, in triangle DEF below.

\[\triangle DEF \]

- D to E: 24 cm
- E to F: x cm
- D to F: 27 cm

5) Triangle ABC is similar to triangle DEF.

\[\triangle ABC \]

- A to B: 2 cm
- B to C: 4 cm
- A to C: x cm

\[\triangle DEF \]

- D to E: 6 cm
- E to F: y cm
- D to F: 18 cm

Find a) x \hspace{2cm} b) y
6) Triangle ABC is similar to triangle DEF.

\[\begin{align*}
\text{A} & \quad \text{B} \\
30 \text{ cm} & \quad 18 \text{ cm} & \quad w \\
116 & \quad y \text{ cm} \\
\text{C} & \quad \text{D} \\
18 & \quad 21 \text{ cm} & \quad 21 \text{ cm} & \quad 31 \\
\text{F} & \quad \text{E} \\
45 \text{ cm} & \quad \text{D} \\
45 \text{ cm} & \quad \text{D} \\
\text{F} & \quad \text{F} \\
\end{align*} \]

Find a) \(v \) b) \(w \) c) \(x \) d) \(y \)

7) Triangle ABC is similar to triangle DEF.

\[\begin{align*}
\text{A} & \quad \text{B} \\
3 \text{ cm} & \quad 10 \text{ cm} & \quad x \text{ cm} \\
\text{C} & \quad \text{C} \\
x \text{ cm} & \quad x \text{ cm} \\
\text{D} & \quad \text{D} \\
48 \text{ cm} & \quad 48 \text{ cm} & \quad 40 \text{ cm} \\
\text{F} & \quad \text{F} \\
\end{align*} \]

Find a) \(x \) b) \(y \)
8) Triangle ABC is similar to triangle DEF.

\[\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}\]

\[\frac{119}{22} = \frac{16}{w} = \frac{22}{33}\]

Find a) \(v\) b) \(w\) c) \(x\) d) \(y\)

9) Find the missing length, \(x\), in the picture below
10) Find the missing length, x, in the picture below

![Triangle with sides 4 cm, 10 cm, 30 cm, 12 cm, x cm, and 6 cm](image)

11) Find the missing length, x, in the picture below

![Triangle with sides x cm, 5 cm, 9 cm, 6 cm, 20 cm, and 30 cm](image)
12) Find the missing lengths, x and y, in the picture below

```
2 cm  8 cm
A    B
y cm  x cm

24 cm
```

13) Find the missing length, x, in the picture below

```
2 cm  5 cm
A    B
2 cm  7 cm

2 cm
```

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute
14) Find the missing lengths, x and y, in the picture below

```
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{triangle.png}
\end{figure}
```

15) Find the missing length, x, in triangle CDE below

```
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{triangle2.png}
\end{figure}
```
16) Find the missing length, x, in triangle CDE below

```
A
/  \\
/    \\
x cm /     \\
/       \\
C
\  \\
\ 7 cm \\
\  \\
B
```

```
A
/  \\
/    \\
\  \\
\ 4 cm \\
\  \\
B
```

```
A
/  \\
/    \\
\  \\
\ 3 cm \\
\  \\
C
```

```
A
/  \\
/    \\
\  \\
\ 5 cm \\
\  \\
B
```

```
E
/  \\
/    \\
\  \\
\ 3 cm \\
\  \\
D
```

```
E
/  \\
/    \\
\  \\
\ 44 cm \\
\  \\
D
```

```
E
/  \\
/    \\
\  \\
\ 21 cm \\
\  \\
D
```

```
E
/  \\
/    \\
\  \\
\ 16 cm \\
\  \\
D
```

```
E
/  \\
/    \\
\  \\
\ 36 cm \\
\  \\
D
```

17) Find the missing length, x, in triangle ABC below
18) Find the missing length, \(x \), in triangle ABC below.

\[
\begin{array}{c}
 A \\
 \downarrow \\
 C \\
 \downarrow \\
 B \\
 \end{array}
\quad\begin{array}{c}
 4 \text{ cm} \\
 \downarrow \\
 24 \text{ cm} \\
 \downarrow \\
 12 \text{ cm} \\
 \end{array}
\quad\begin{array}{c}
 E \\
 \downarrow \\
 D \\
 \end{array}
\]

\[
x \text{ cm}
\]

\[
30 \text{ cm}
\]

19) Find the missing lengths, \(x \) and \(y \), in the diagram below.

\[
\begin{array}{c}
 A \\
 \downarrow \\
 C \\
 \downarrow \\
 B \\
 \end{array}
\quad\begin{array}{c}
 2 \text{ cm} \\
 \downarrow \\
 3 \text{ cm} \\
 \downarrow \\
 8 \text{ cm} \\
 \end{array}
\quad\begin{array}{c}
 E \\
 \downarrow \\
 D \\
 \end{array}
\]

\[
x \text{ cm}
\]

\[
y \text{ cm}
\]

\[
20 \text{ cm}
\]
20) Find the missing lengths, x and y, in the diagram below.

21) Describe each position A, B, C, D and E on the probability scale using appropriate vocabulary.

22) Mackenzie bought a bag of sweets, 6 of them are yellow, 3 are green and 5 are orange.

Find the probability that a randomly selected sweet is

a) not yellow

b) yellow or green

Find the probability of:

a) choosing the letter s
b) not choosing the letter s

24) One student is chosen at random from the test results given in the table below.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>19</td>
<td>7</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>10</td>
<td>32</td>
<td>70</td>
</tr>
</tbody>
</table>

Find the probability that the student did not get a grade A

25) Brayden tosses a coin. Find the probability he gets a head.

26) Frank rolls a dice. Find the probability he gets a two.

27) Alfonso rolls a dice. Find the probability he gets a number greater than two.
28) Find the probability that for a random spin of the spinner, the arrow points to 9. [1]

29) Find the probability that for a random spin of the spinner, the arrow points to 2. [1]

30) Find the probability that for a random spin of the spinner, the arrow points to 2. [1]
31) If you select a card at random from a standard pack of 52 playing cards (ace is counted as 1), find the probability of choosing:

a) a two of Diamonds

b) a Heart

c) a two

32) If you select a card at random from a standard pack of cards (ace is counted as 1), find the probability of choosing:

a) an eight of

b) a Club or Diamond

c) a number smaller than 6

33) A card is drawn randomly from a standard 52-card deck.

Find the probability that the card drawn is:

a) a diamond or five

b) a jack or spade

c) a four or red card
34) A number is chosen at random from the set of numbers
1,2,3,4,5,6,7,8,9,10,11,12,13,14

Find the probability that the number is:

a) an even number
b) an odd number

35) A number is chosen at random from the set of numbers
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

Find the probability that the number is:

a) a square number
b) a prime number
c) a multiple of 4

36) A number is chosen at random from the set of numbers
1,2,3,4,5,6

Find the probability that the number is:

a) a factor of 17
b) a cube number
37) A marble is drawn randomly from a jar that contains 4 purple marbles, 2 brown balls, and 5 yellow marbles.

Find the probability of selecting:

a) a purple marble

b) a brown marble

c) a yellow marble

38) A marble is drawn randomly from a jar that contains 7 pink marbles, 5 white balls, and 12 blue marbles.

Find the probability of selecting:

a) a pink marble

b) a white marble

c) a blue marble

39) A counter is drawn randomly from a jar that contains 3 white counters, 5 green balls, and 4 red counters.

Find the probability of selecting:

a) a counter that is not white

b) a white or red counter

c) a blue counter

d) a counter that is not purple
40) Corey chooses a letter at random from the word SIX.
Find the probability that he chooses:

a) an X
b) an S

41) Eduardo chooses a letter at random from the word SYMMETRY.
Find the probability that he chooses:

a) a T
b) an M

42) Damien chooses a letter at random from the word SIGNIFICANT.
Find the probability that he chooses:

a) an N
b) an I

43) The sample space below shows the results obtained from tossing a coin and throwing a die.
Find the probability of getting Heads and a square number.

<table>
<thead>
<tr>
<th>Coin</th>
<th>Die</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>H,1</td>
<td>H,2</td>
<td>H,3</td>
<td>H,4</td>
<td>H,5</td>
</tr>
<tr>
<td>T</td>
<td>T,1</td>
<td>T,2</td>
<td>T,3</td>
<td>T,4</td>
<td>T,5</td>
<td>T,6</td>
</tr>
</tbody>
</table>
44) The sample space below shows the outcomes from throwing two dice.

Find the probability that the two dice add to 10.

<table>
<thead>
<tr>
<th></th>
<th>Dice 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,5</td>
</tr>
<tr>
<td>2</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
<td>2,4</td>
<td>2,5</td>
</tr>
<tr>
<td>3</td>
<td>3,1</td>
<td>3,2</td>
<td>3,3</td>
<td>3,4</td>
<td>3,5</td>
</tr>
<tr>
<td>4</td>
<td>4,1</td>
<td>4,2</td>
<td>4,3</td>
<td>4,4</td>
<td>4,5</td>
</tr>
<tr>
<td>5</td>
<td>5,1</td>
<td>5,2</td>
<td>5,3</td>
<td>5,4</td>
<td>5,5</td>
</tr>
<tr>
<td>6</td>
<td>6,1</td>
<td>6,2</td>
<td>6,3</td>
<td>6,4</td>
<td>6,5</td>
</tr>
</tbody>
</table>

45) The sample space below shows the scores obtained from throwing two dice and adding them together.

Find the probability that the two dice add to 2.

<table>
<thead>
<tr>
<th></th>
<th>Dice 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
46) The sample space below shows the scores obtained from throwing two dice and adding them together. Find the probability that the two dice add to 4 or more.

<table>
<thead>
<tr>
<th>Dice 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

47) Two dice are rolled. What is the probability that the sum of the two dice is 5? [1]

48) Two dice are rolled. What is the probability that the product of the two dice is 8? [1]

49) Two dice are rolled. What is the probability that the sum of the two dice is greater than or equal to 9? [1]
50) Wyatt picks two counters out of a jar that contains 5 white counters and 2 red counters. Note that he returns the first counter to the jar before he picks the second.

Find the probability that Wyatt picks two red counters.

51) A group of people were asked if they owned a dog. 129 responded "yes", and 94 responded "no".

Find the probability that if a person is chosen at random, they own a dog.

52) A roulette wheel has slots numbered from 0 to 38.

Find the probability that the ball lands on an odd number.
Solutions for the assessment Revision 6: Similar Triangles and Probability

1) \(x = 7\) cm

2) \(x = 48\) cm

3) \(x = 5\) cm

4) \(x = 30\) cm

5) \(x = 6\) cm, \(y = 12\) cm

6) \(v = 14\) cm, \(w = 31^\circ\), \(x = 33^\circ\), \(y = 27\) cm

7) \(x = 12\) cm, \(y = 12\) cm

8) \(v = 10\) cm, \(w = 29^\circ\), \(x = 32^\circ\), \(y = 24\) cm

9) \(x = 11\) cm

10) \(x = 12\) cm

11) \(x = 2\) cm

12) \(x = 10\) cm, \(y = 6\) cm

13) \(x = 14\) cm

14) \(x = 10\) cm, \(y = 24\) cm

15) \(x = 18\) cm

16) \(x = 15\) cm

17) \(x = 11\) cm

18) \(x = 10\) cm

19) \(x = 5\) cm, \(y = 12\) cm

20) \(x = 12\) cm, \(y = 40\) cm

21) A = impossible, B = unlikely, C = evens, C = likely, D = certain

22) a) \(P(\text{not yellow}) = \frac{4}{7}\)
 b) \(P(\text{yellow or green}) = \frac{9}{14}\)

23) a) \(P(\text{choosing the letter s}) = \frac{1}{26}\)
 b) \(P(\text{not choosing the letter s}) = \frac{25}{26}\)

24) \(P(\text{did not get a grade A}) = \frac{3}{5}\)

25) \(P(\text{head}) = \frac{1}{2}\)
27) \(P(\text{a number greater than two}) = \frac{2}{3} \)

28) \(\frac{1}{10} \)

29) \(\frac{1}{4} \)

30) \(\frac{3}{10} \)

31) a) \(P(\text{a two of Diamonds}) = \frac{1}{52} \)
b) \(P(\text{a Heart}) = \frac{1}{4} \)
c) \(P(\text{a two}) = \frac{1}{13} \)

32) a) \(P(\text{an eight of Clubs}) = \frac{1}{52} \)
b) \(P(\text{a Club or Diamond}) = \frac{1}{2} \)
c) \(P(\text{a number smaller than 6}) = \frac{5}{13} \)

33) a) \(P(\text{a diamond or five}) = \frac{4}{13} \)
b) \(P(\text{a jack or spade}) = \frac{4}{13} \)
c) \(P(\text{a four or red card}) = \frac{7}{13} \)

34) a) \(P(\text{an even number}) = \frac{1}{2} \)
b) \(P(\text{odd number}) = \frac{1}{2} \)

35) a) \(P(\text{square number}) = \frac{4}{17} \)
b) \(P(\text{prime number}) = \frac{7}{17} \)
c) \(P(\text{multiple of 4}) = \frac{4}{17} \)

36) a) \(P(\text{factor of 17}) = \frac{1}{6} \)
b) \(P(\text{cube number}) = \frac{1}{6} \)

37) a) \(P(\text{purple marble}) = \frac{4}{11} \)
b) \(P(\text{brown marble}) = \frac{2}{11} \)
c) \(P(\text{yellow marble}) = \frac{5}{11} \)

38) a) \(P(\text{pink marble}) = \frac{7}{24} \)
b) \(P(\text{white marble}) = \frac{5}{24} \)
c) \(P(\text{blue marble}) = \frac{1}{2} \)

39) a) \(P(\text{not white}) = \frac{3}{4} \)
b) \(P(\text{white or red}) = \frac{7}{12} \)
c) \(P(\text{blue}) = 0 \)
d) \(P(\text{not purple}) = 1 \)

40) a) \(P(\text{an X}) = \frac{1}{3} \), b) \(P(\text{an S}) = \frac{1}{3} \)

41) a) \(P(\text{a T}) = \frac{1}{8} \), b) \(P(\text{an M}) = \frac{1}{4} \)

42) a) \(P(\text{an N}) = \frac{2}{11} \), b) \(P(\text{an I}) = \frac{3}{11} \)

43) \(P(\text{getting Heads and a square number}) = \frac{1}{12} \)

44) \(P(\text{dice add to 10}) = \frac{1}{12} \)
45) \(P(\text{dice add to 2}) = \frac{1}{36} \)

46) \(P(\text{dice add to 4 or more}) = \frac{11}{12} \)

47) \(P(\text{sum is 5}) = \frac{1}{9} \)

48) \(P(\text{product is 8}) = \frac{1}{18} \)

49) \(P(\text{sum } \geq 9) = \frac{5}{18} \)

50) \(P(\text{R and R}) = \frac{4}{49} \)

51) \(\frac{129}{223} \)

52) \(P(\text{odd number}) = \frac{19}{39} \)